
Behat
Release 3.0.12

April 21, 2017

Contents

1 Introduction 3
1.1 Behaviour Driven Development . 3

2 Quick Start 5
2.1 Example . 5
2.2 Installation . 7
2.3 Development . 8

3 User Guide 17
3.1 The Gherkin Language . 17
3.2 Features and Scenarios . 18
3.3 Initialize a New Behat Project . 19
3.4 Writing Scenarios . 20
3.5 Organizing Features and Scenarios . 26
3.6 Testing Features . 26
3.7 Command Line Tool . 45
3.8 Configuration . 48

4 Cookbooks 55
4.1 Integrating Symfony2 with Behat . 55
4.2 Accessing Contexts from each other . 57

5 Useful Resources 59
5.1 Integrating Behat with PHPStorm . 59
5.2 Behat cheat sheet . 59

i

ii

Behat, Release 3.0.12

Behat is an open source Behavior Driven Development framework for PHP 5.3+. What’s behavior driven development,
you ask? It’s a way to develop software through a constant communication with stakeholders in form of examples;
examples of how this software should help them, and you, to achieve your goals.

For example, imagine you’re about to create the famous UNIX ls command. Before you begin, you will have a
conversation with your stakeholders (UNIX users) and they might say that even though they like UNIX a lot, they
need a way to see all the files in the current working directory. You then have a back-and-forth chat with them about
how they see this feature working and you come up with your first scenario (an alternative name for example in BDD
methodology):

Feature: Listing command
In order to change the structure of the folder I am currently in
As a UNIX user
I need to be able see the currently available files and folders there

Scenario: Listing two files in a directory
Given I am in a directory "test"
And I have a file named "foo"
And I have a file named "bar"
When I run "ls"
Then I should get:

"""
bar
foo
"""

If you are a stakeholder, this is your proof that developers understand exactly how you want this feature to work. If
you are a developer, this is your proof that the stakeholder expects you to implement this feature exactly in the way
you’re planning to implement it.

So, as a developer your work is done as soon as you’ve made the ls command, and made it behave as described in the
“Listing command” scenario.

You’ve probably heard about this modern development practice called TDD, where you write tests for your code
before, not after, the code. Well, BDD is like that, except that you don’t need to come up with a test - your scenarios
are your tests. That’s exactly what Behat does! As you’ll see, Behat is easy to learn, quick to use, and will put the fun
back into your testing.

Note: Behat was heavily inspired by Ruby’s Cucumber project. Since v3.0, Behat is considered an official Cucumber
implementation in PHP and is part of one big family of BDD tools.

Contents 1

http://cukes.info/

Behat, Release 3.0.12

2 Contents

CHAPTER 1

Introduction

Behaviour Driven Development

Once you’re up and running with Behat, you can learn more about behaviour driven development via the following
links. Though both tutorials are specific to Cucumber, Behat shares a lot with Cucumber and the philosophies are one
and the same.

• Dan North’s “What’s in a Story?”

• Cucumber’s “Backgrounder”

3

http://dannorth.net/whats-in-a-story
https://github.com/cucumber/cucumber/wiki/Cucumber-Backgrounder

Behat, Release 3.0.12

4 Chapter 1. Introduction

CHAPTER 2

Quick Start

Welcome to Behat! Behat is a tool to close the Behavior Driven Development (BDD) communication loop. BDD is
a methodology for developing software through continuous example-based communication between developers and a
business, which this application supports. This communication happens in a form that both the business and developers
can clearly understand - examples. Examples are structured around the Context-Action-Outcome pattern and
are written in a special format called Gherkin. The fact that Gherkin is very structural makes it very easy to automate
and autotest your behaviour examples against a developing application. Automated examples are then actually used to
drive this application development TDD-style.

To become a Behat’er in 30 minutes, just dive into the quick-start guide and enjoy!

Example

Let’s imagine that you are building a completely new e-commerce platform. One of the key features of any online
shopping platform is the ability to buy products. But before buying anything, customers should be able to tell the
system which products they are interested in buying. You need a basket. So let’s write our first user-story:

Feature: Product basket
In order to buy products
As a customer
I need to be able to put interesting products into a basket

Note: This is a basic Gherkin feature and it is a simple description of this feature’s story. Every feature starts with
this same format: a line with the title of the feature, followed by three lines that describe the benefit, the role and the
feature itself with any amount of additional description lines following after.

Before we begin to work on this feature, we must fulfil a promise of any user-story and have a real conversation with
our business stakeholders. They might say that they want customers to see not only the combined price of the products
in the basket, but the price reflecting both the VAT (20%) and the delivery cost (which depends on the total price of
the products):

Feature: Product basket
In order to buy products
As a customer
I need to be able to put interesting products into a basket

Rules:
- VAT is 20%
- Delivery for basket under £10 is £3
- Delivery for basket over £10 is £2

5

http://en.wikipedia.org/wiki/Behavior_Driven_Development

Behat, Release 3.0.12

So as you can see, it already becomes tricky (ambiguous at least) to talk about this feature in terms of rules. What
does it mean to add VAT? What happens when we have two products, one of which is less than £10 and another that
is more? Instead you proceed with having a back-and-forth chat with stakeholders in form of actual examples of a
customer adding products to the basket. After some time, you will come up with your first behaviour examples (in
BDD these are called scenarios):

Feature: Product basket
In order to buy products
As a customer
I need to be able to put interesting products into a basket

Rules:
- VAT is 20%
- Delivery for basket under £10 is £3
- Delivery for basket over £10 is £2

Scenario: Buying a single product under £10
Given there is a "Sith Lord Lightsaber", which costs £5
When I add the "Sith Lord Lightsaber" to the basket
Then I should have 1 product in the basket
And the overall basket price should be £9

Scenario: Buying a single product over £10
Given there is a "Sith Lord Lightsaber", which costs £15
When I add the "Sith Lord Lightsaber" to the basket
Then I should have 1 product in the basket
And the overall basket price should be £20

Scenario: Buying two products over £10
Given there is a "Sith Lord Lightsaber", which costs £10
And there is a "Jedi Lightsaber", which costs £5
When I add the "Sith Lord Lightsaber" to the basket
And I add the "Jedi Lightsaber" to the basket
Then I should have 2 products in the basket
And the overall basket price should be £20

Note: Each scenario always follows the same basic format:

Scenario: Some description of the scenario
Given some context
When some event
Then outcome

Each part of the scenario - the context, the event, and the outcome - can be extended by adding the And or But
keyword:

Scenario: Some description of the scenario
Given some context
And more context
When some event
And second event occurs
Then outcome
And another outcome
But another outcome

There’s no actual difference between, Then, And But or any of the other words that start each line. These keywords
are all made available so that your scenarios are natural and readable.

This is your and your stakeholders’ shared understanding of the project written in a structured format. It is all

6 Chapter 2. Quick Start

Behat, Release 3.0.12

based on the clear and constructive conversation you have had together. Now you can put this text in a simple file
- features/basket.feature - under your project directory and start implementing the feature by manually
checking if it fits the defined scenarios. No tools (Behat in our case) needed. That, in essence, is what BDD is.

If you are still reading, it means you are expecting more. Good! Because even though tools are not the central piece of
BDD puzzle, they do improve the entire process and add a lot of benefits on top of it. For one, tools like Behat actually
do close the communication loop of the story. It means that not only you and your stakeholder can together define how
your feature should work before going to implement it, BDD tools allow you to automate that behaviour check after
this feature is implemented. So everybody knows when it is done and when the team can stop writing code. That, in
essence, is what Behat is.

Behat is an executable that you’ll run from the command line to test that your application behaves exactly as you
described in your *.feature scenarios.

Going forward, we’ll show you how Behat can be used to automate this particular basket feature as a test verifying
that the application (existing or not) works as you and your stakeholders expect (according to your conversation) it to.

That’s it! Behat can be used to automate anything, including web-related functionality via the Mink library.

Note: If you want to learn more about the philosophy of “Behaviour Driven Development” of your application, see
What’s in a Story?

Note: Behat was heavily inspired by Ruby’s Cucumber project. Since v3.0, Behat is considered an official Cucumber
implementation in PHP and is part of one big family of BDD tools.

Installation

Before you begin, ensure that you have at least PHP 5.3.3 installed.

Method #1 - Composer (the recommended one)

The official way to install Behat is through Composer. Composer is a package manager for PHP. Not only can it install
Behat for you right now, it will be able to easily update you to the latest version later when one comes out. If you
don’t have Composer already, see the Composer documentation for instructions. After that, just go into your project
directory (or create a new one) and run:

$ php composer.phar require --dev behat/behat=~3.0.4

Then you will be able to check installed Behat version using:

$ vendor/bin/behat -V

Method #2 - PHAR (an easy one)

An easier way to install Behat is to grab a latest behat.phar from the download page. Make sure that you download
a 3+ release. After downloading it, just place it in your project folder (or create a new one) and check the installed
version using:

$ php behat.phar -V

2.2. Installation 7

https://github.com/behat/mink
http://blog.dannorth.net/whats-in-a-story/
http://cukes.info/
https://getcomposer.org/download/
https://github.com/Behat/Behat/releases

Behat, Release 3.0.12

Development

Now we will use our newly installed Behat to automate our previously written feature under the
features/basket.feature.

Our first step after describing the feature and installing Behat is configuring the test suite. A test suite is a key concept
in Behat. Suites are a way for Behat to know where to find and how to test your application against your features. By
default, Behat comes with a default suite, which tells Behat to search for features under the features/ folder
and test them using FeatureContext class. Lets initialise this suite:

$ vendor/bin/behat --init

Note: If you installed Behat via PHAR, use php behat.phar instead of vendor/bin/behat in the rest of
this article.

The --init command tells Behat to provide you with things missing to start testing your feature. In our case - it’s
just a FeatureContext class under the features/bootstrap/FeatureContext.php file.

Executing Behat

I think we’re ready to see Behat in action! Let’s run it:

$ vendor/bin/behat

You should see that Behat recognised that you have 3 scenarios. Behat should also tell you that your
FeatureContext class has missing steps and proposes step snippets for you. FeatureContext is your test
environment. It is an object through which you will describe how you would test your application against your fea-
tures. It was generated by the --init command and now looks like this:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\SnippetAcceptingContext;
use Behat\Gherkin\Node\PyStringNode;
use Behat\Gherkin\Node\TableNode;

class FeatureContext implements SnippetAcceptingContext
{

/**
* Initializes context.

*/
public function __construct()
{
}

}

Defining Steps

Finally, we got to the automation part. How does Behat know what to do when it sees Given there is a
"Sith Lord Lightsaber", which costs £5? You tell it. You write PHP code inside your context class
(FeatureContext in our case) and tell Behat that this code represents a specific scenario step (via an annotation
with a pattern):

/**
* @Given there is a(n) :arg1, which costs £:arg2

8 Chapter 2. Quick Start

Behat, Release 3.0.12

*/
public function thereIsAWhichCostsPs($arg1, $arg2)
{

throw new PendingException();
}

Note: /** ... */ is a special syntax in PHP called a doc-block. It is discoverable at runtime and used by
different PHP frameworks as a way to provide additional meta-information for the classes, methods and functions.
Behat uses doc-blocks for step definitions, step transformations and hooks.

@Given there is a(n) :arg1, which costs £:arg2 above the method tells Behat that this particular
method should be executed whenever Behat sees step that looks like ... there is a ..., which costs
£.... This pattern will match any of the following steps:

Given there is a "Sith Lord Lightsaber", which costs £5
When there is a "Sith Lord Lightsaber", which costs £10
Then there is an ’Anakin Lightsaber’, which costs £10
And there is a Lightsaber, which costs £2
But there is a Lightsaber, which costs £25

Not only that, but Behat will capture tokens (words starting with :, e.g. :arg1) from the step and pass their value to
the method as arguments:

// Given there is a "Sith Lord Lightsaber", which costs £5
$context->thereIsAWhichCostsPs(’Sith Lord Lightsaber’, ’5’);

// Then there is a ’Jedi Lightsaber’, which costs £10
$context->thereIsAWhichCostsPs(’Jedi Lightsaber’, ’10’);

// But there is a Lightsaber, which costs £25
$context->thereIsAWhichCostsPs(’Lightsaber’, ’25’);

Note: If you need to define more complex matching algorithms, you can also use regular expressions:

/**
* @Given /there is an? \"([^\"]+)\", which costs £([\d\.]+)/

*/
public function thereIsAWhichCostsPs($arg1, $arg2)
{

throw new PendingException();
}

Those patterns could be quite powerful, but at the same time, writing them for all possible steps manually could
become extremely tedious and boring. That’s why Behat does it for you. Remember when you previously executed
vendor/bin/behat you got:

--- FeatureContext has missing steps. Define them with these snippets:

/**
* @Given there is a :arg1, which costs £:arg2

*/
public function thereIsAWhichCostsPs($arg1, $arg2)
{

throw new PendingException();
}

Behat automatically generates snippets for missing steps and all that you need to do is copy and paste them into your

2.3. Development 9

Behat, Release 3.0.12

context classes. Or there is an even easier way - just run:

$ vendor/bin/behat --dry-run --append-snippets

And Behat will automatically append all the missing step methods into your FeatureContext class. How cool is
that?

If you executed --append-snippets, your FeatureContext should look like:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Tester\Exception\PendingException;
use Behat\Behat\Context\SnippetAcceptingContext;
use Behat\Gherkin\Node\PyStringNode;
use Behat\Gherkin\Node\TableNode;

class FeatureContext implements SnippetAcceptingContext
{

/**
* @Given there is a :arg1, which costs £:arg2

*/
public function thereIsAWhichCostsPs($arg1, $arg2)
{

throw new PendingException();
}

/**
* @When I add the :arg1 to the basket

*/
public function iAddTheToTheBasket($arg1)
{

throw new PendingException();
}

/**
* @Then I should have :arg1 product(s) in the basket

*/
public function iShouldHaveProductInTheBasket($arg1)
{

throw new PendingException();
}

/**
* @Then the overall basket price should be £:arg1

*/
public function theOverallBasketPriceShouldBePs($arg1)
{

throw new PendingException();
}

}

Note: We have removed the constructor and grouped I should have :arg1 product in the
basket and I should have :arg1 products in the basket into one I should have :arg1
product(s) in the basket.

10 Chapter 2. Quick Start

Behat, Release 3.0.12

Automating Steps

Now it is finally time to start implementing our basket feature. The approach when you use tests to drive your
application development is called a Test-Driven Development (or simply TDD). With TDD you start by defining test
cases for the functionality you develop, then you fill these test cases with the best-looking application code you could
come up with (use your design skills and imagination).

In the case of Behat, you already have defined test cases (step definitions in your FeatureContext) and the only
thing that is missing is that best-looking application code we could come up with to fulfil our scenario. Something like
this:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Tester\Exception\PendingException;
use Behat\Behat\Context\SnippetAcceptingContext;
use Behat\Gherkin\Node\PyStringNode;
use Behat\Gherkin\Node\TableNode;

class FeatureContext implements SnippetAcceptingContext
{

private $shelf;
private $basket;

public function __construct()
{

$this->shelf = new Shelf();
$this->basket = new Basket($this->shelf);

}

/**
* @Given there is a :product, which costs £:price

*/
public function thereIsAWhichCostsPs($product, $price)
{

$this->shelf->setProductPrice($product, floatval($price));
}

/**
* @When I add the :product to the basket

*/
public function iAddTheToTheBasket($product)
{

$this->basket->addProduct($product);
}

/**
* @Then I should have :count product(s) in the basket

*/
public function iShouldHaveProductInTheBasket($count)
{

PHPUnit_Framework_Assert::assertCount(
intval($count),
$this->basket

);
}

/**
* @Then the overall basket price should be £:price

*/

2.3. Development 11

Behat, Release 3.0.12

public function theOverallBasketPriceShouldBePs($price)
{

PHPUnit_Framework_Assert::assertSame(
floatval($price),
$this->basket->getTotalPrice()

);
}

}

As you can see, in order to test and implement our application, we introduced 2 objects - Shelf and Basket.
The first is responsible for storing products and their prices, the second is responsible for the representation of our
customer basket. Through appropriate step definitions we declare products’ prices and add products to the basket. We
then compare the state of our Basket object with our expectations using PHPUnit assertions.

Note: Behat doesn’t come with its own assertion tool, but you can use any proper assertion tool out there. A proper
assertion tool is a library whose assertions throw exceptions on failure. For example, if you’re familiar with PHPUnit
you can use its assertions in Behat by installing it via composer:

$ php composer.phar require --dev phpunit/phpunit=’~4.1.0’

and then by simply using assertions in your steps:

PHPUnit_Framework_Assert::assertCount(
intval($count),
$this->basket

);

Now try to execute your feature tests:

$ vendor/bin/behat

You should see a beginning of the feature and then an error saying that class Shelf does not exist. It means we’re
ready to start writing actual application code!

Implementing the Feature

So now we have 2 very important things:

1. A concrete user-aimed description of functionality we’re trying to deliver.

2. Set of failing tests that tell us what to do next.

Now is the easiest part of application development - feature implementation. Yes, with TDD and BDD implementation
becomes a routine task, because you already did most of the job in the previous phases - you wrote tests, you came
up with an elegant solution (as far as you could go in current context) and you chose the actors (objects) and actions
(methods) that are involved. Now it’s time to write a bunch of PHP keywords to glue it all together. Tools like Behat,
when used in the right way, will help you to write this phase by giving you a simple set of instructions that you need
to follow. You did your thinking and design, now it’s time to sit back, run the tool and follow its instructions in order
to write your production code.

Lets start! Run:

$ vendor/bin/behat

Behat will try to test your application with FeatureContext but will fail soon, producing something like this onto
your screen:

12 Chapter 2. Quick Start

Behat, Release 3.0.12

Fatal error: Class ’Shelf’ not found

Now our job is to reinterpret this phrase into an actionable instruction. Like “Create the Shelf class”. Let’s go and
create it inside features/bootstrap:

// features/bootstrap/Shelf.php

final class Shelf
{
}

Note: We put the Shelf class into features/bootstrap/Shelf.php because features/bootstrap is
an autoloading folder for Behat. Behat has a built-in PSR-0 autoloader, which looks into features/bootstrap.
If you’re developing your own application, you probably would want to put classes into a place appropriate for your
app.

Let’s run Behat again:

$ vendor/bin/behat

We will get different message on our screen:

Fatal error: Class ’Basket’ not found

Good, we are progressing! Reinterpreting the message as, “Create the Basket class”. Let’s follow our new instruc-
tion:

// features/bootstrap/Basket.php

final class Basket
{
}

Run Behat again:

$ vendor/bin/behat

Great! Another “instruction”:

Call to undefined method Shelf::setProductPrice()

Follow these instructions step-by-step and you will end up with Shelf class looking like this:

// features/bootstrap/Shelf.php

final class Shelf
{

private $priceMap = array();

public function setProductPrice($product, $price)
{

$this->priceMap[$product] = $price;
}

public function getProductPrice($product)
{

return $this->priceMap[$product];
}

}

2.3. Development 13

Behat, Release 3.0.12

and Basket class looking like this:

// features/bootstrap/Basket.php

final class Basket implements \Countable
{

private $shelf;
private $products;
private $productsPrice = 0.0;

public function __construct(Shelf $shelf)
{

$this->shelf = $shelf;
}

public function addProduct($product)
{

$this->products[] = $product;
$this->productsPrice += $this->shelf->getProductPrice($product);

}

public function getTotalPrice()
{

return $this->productsPrice
+ ($this->productsPrice * 0.2)
+ ($this->productsPrice > 10 ? 2.0 : 3.0);

}

public function count()
{

return count($this->products);
}

}

Run Behat again:

$ vendor/bin/behat

All scenarios should pass now! Congratulations, you almost finished your first feature. The last step is to refactor.
Look at the Basket and Shelf classes and try to find a way to make their code even more cleaner, easier to read
and concise.

Tip: I would recommend starting from Basket::getTotalPrice() method and extracting VAT and delivery
cost calculation in private methods.

After refactoring is done, you will have:

1. Clearly designed and obvious code that does exactly the thing it should do without any gold plating.

2. A regression test suite that will help you to be confident in your code going forward.

3. Living documentation for the behaviour of your code that will live, evolve and die together with your code.

4. An incredible level of confidence in your code. Not only are you confident now that it does exactly what it’s
supposed to do, you are confident that it does so by delivering value to the final users (customers in our case).

There are many more benefits to BDD but those are the key reasons why most BDD practitioners do BDD in Ruby,
.Net, Java, Python and JS. Welcome to the family!

14 Chapter 2. Quick Start

Behat, Release 3.0.12

What’s Next?

Congratulations! You now know everything you need in order to get started with behavior driven development and
Behat. From here, you can learn more about the Gherkin syntax or learn how to test your web applications by using
Behat with Mink.

2.3. Development 15

Behat, Release 3.0.12

16 Chapter 2. Quick Start

CHAPTER 3

User Guide

The Gherkin Language

Behat is a tool to test the behavior of your application, described in a special language called Gherkin. Gherkin is a
Business Readable, Domain Specific Language created specifically for behavior descriptions. It gives you the ability
to remove logic details from behavior tests.

Gherkin serves as your project’s documentation as well as your project’s automated tests. Behat also has a bonus
feature: It talks back to you using real, human language telling you what code you should write.

Tip: If you’re still new to Behat, jump into the Quick Start first, then return here to learn more about Gherkin.

Gherkin Syntax

Like YAML and Python, Gherkin is a whitespace-oriented language that uses indentation to define structure. Line
endings terminate statements (called steps) and either spaces or tabs may be used for indentation (we suggest you use
spaces for portability). Finally, most lines in Gherkin start with a special keyword:

Feature: Some terse yet descriptive text of what is desired
In order to realize a named business value
As an explicit system actor
I want to gain some beneficial outcome which furthers the goal

Additional text...

Scenario: Some determinable business situation
Given some precondition
And some other precondition
When some action by the actor
And some other action
And yet another action
Then some testable outcome is achieved
And something else we can check happens too

Scenario: A different situation
...

The parser divides the input into features, scenarios and steps. Let’s walk through the above example:

1. Feature: Some terse yet descriptive text of what is desired starts the feature and
gives it a title. Learn more about “Features”.

17

http://martinfowler.com/bliki/BusinessReadableDSL.html

Behat, Release 3.0.12

2. The next three lines (In order to ..., As an ..., I want to ...) provide context to the people
reading your feature and describe the business value derived from the inclusion of the feature in your software.
These lines are not parsed by Behat and don’t have a required structure.

3. Scenario: Some determinable business situation starts the scenario and contains a de-
scription of the scenario. Learn more about “Scenarios”.

4. The next 7 lines are the scenario steps, each of which is matched to a pattern defined elsewhere. Learn more
about “Steps”.

5. Scenario: A different situation starts the next scenario and so on.

When you’re executing the feature, the trailing portion of each step (after keywords like Given, And, When, etc) is
matched to a pattern, which executes a PHP callback function. You can read more about steps matching and execution
in “Defining Reusable Actions”.

Gherkin in Many Languages

Gherkin is available in many languages, allowing you to write stories using localized keywords from your language.
In other words, if you speak French, you can use the word Fonctionnalité instead of Feature.

To check if Behat and Gherkin support your language (for example, French), run:

behat --story-syntax --lang=fr

Note: Keep in mind that any language different from en should be explicitly marked with a # language: ...
comment at the beginning of your *.feature file:

language: fr
Fonctionnalité: ...
...

This way your features will hold all the information about its content type, which is very important for methodologies
like BDD and also gives Behat the ability to have multilanguage features in one suite.

Features and Scenarios

Features

Every *.feature file conventionally consists of a single feature. Lines starting with the keyword Feature: (or
its localized equivalent) followed by three indented lines starts a feature. A feature usually contains a list of scenarios.
You can write whatever you want up until the first scenario, which starts with Scenario: (or localized equivalent)
on a new line. You can use Tags to group features and scenarios together, independent of your file and directory
structure.

Every scenario consists of a list of Steps, which must start with one of the keywords Given, When, Then, But or
And (or a localized version of one of these). Behat treats them all the same, but you shouldn’t. Here is an example:

Feature: Serve coffee
In order to earn money
Customers should be able to
buy coffee at all times

Scenario: Buy last coffee
Given there are 1 coffees left in the machine

18 Chapter 3. User Guide

Behat, Release 3.0.12

And I have deposited 1 dollar
When I press the coffee button
Then I should be served a coffee

In addition to basic Scenarios, features may contain Scenario Outlines and Backgrounds.

Scenarios

Scenarios are one of the core Gherkin structures. Every scenario starts with the Scenario: keyword (or localized
keyword), followed by an optional scenario title. Each feature can have one or more scenarios and every scenario
consists of one or more Steps.

The following scenarios each have 3 steps:

Scenario: Wilson posts to his own blog
Given I am logged in as Wilson
When I try to post to "Expensive Therapy"
Then I should see "Your article was published."

Scenario: Wilson fails to post to somebody else’s blog
Given I am logged in as Wilson
When I try to post to "Greg’s anti-tax rants"
Then I should see "Hey! That’s not your blog!"

Scenario: Greg posts to a client’s blog
Given I am logged in as Greg
When I try to post to "Expensive Therapy"
Then I should see "Your article was published."

Initialize a New Behat Project

The easiest way to start using Behat in your project is to call behat with the --init option inside your project
directory:

$ vendor/bin/behat --init

After you run this command, Behat will set up a features directory inside your project:

The newly created features/bootstrap/FeatureContext.php will have an initial context class to get you
started:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\SnippetAcceptingContext;
use Behat\Gherkin\Node\PyStringNode;
use Behat\Gherkin\Node\TableNode;

class FeatureContext implements SnippetAcceptingContext
{

/**
* Initializes context.

*/
public function __construct()
{
}

}

3.3. Initialize a New Behat Project 19

Behat, Release 3.0.12

All step definitions and Hooks necessary for testing your project against your features will be represented as methods
inside this class.

Suite Initialisation

Suites are a core part of Behat. Any feature of Behat knows about them and can give you a hand with them. For
example, if you defined your suites in behat.yml before running --init, it will actually create the folders and
suites you configured, instead of the default ones.

Writing Scenarios

Steps

Features consist of steps, also known as Givens, Whens and Thens.

Behat doesn’t technically distinguish between these three kind of steps. However, we strongly recommend that you
do! These words have been carefully selected for their purpose and you should know what the purpose is to get into
the BDD mindset.

Robert C. Martin has written a great post about BDD’s Given-When-Then concept where he thinks of them as a finite
state machine.

Givens

The purpose of the Given steps is to put the system in a known state before the user (or external system) starts
interacting with the system (in the When steps). Avoid talking about user interaction in givens. If you have worked
with use cases, givens are your preconditions.

Given Examples

Two good examples of using Givens are:
• To create records (model instances) or set up the database:

Given there are no users on site
Given the database is clean

• Authenticate a user (an exception to the no-interaction recommendation. Things that “happened earlier”
are ok):

Given I am logged in as "Everzet"

Tip: It’s OK to call into the layer “inside” the UI layer here (in Symfony: talk to the models).

20 Chapter 3. User Guide

https://sites.google.com/site/unclebobconsultingllc/the-truth-about-bdd

Behat, Release 3.0.12

Using Givens as Data Fixtures

If you use ORMs like Doctrine or Propel, we recommend using a Given step with a tables argument to set up
records instead of fixtures. This way you can read the scenario all in one place and make sense out of it without
having to jump between files:

Given there are users:
username	password	email
everzet	123456	everzet@knplabs.com
fabpot	22@222	fabpot@symfony.com

Whens

The purpose of When steps is to describe the key action the user performs (or, using Robert C. Martin’s metaphor,
the state transition).

When Examples

Two good examples of using Whens are:
• Interact with a web page (the Mink library gives you many web-friendly When steps out of the box):

When I am on "/some/page"
When I fill "username" with "everzet"
When I fill "password" with "123456"
When I press "login"

• Interact with some CLI library (call commands and record output):

When I call "ls -la"

Thens

The purpose of Then steps is to observe outcomes. The observations should be related to the business value/benefit in
your feature description. The observations should inspect the output of the system (a report, user interface, message,
command output) and not something deeply buried inside it (that has no business value and is instead part of the
implementation).

3.4. Writing Scenarios 21

Behat, Release 3.0.12

Then Examples

Two good examples of using Thens are:
• Verify that something related to the Given + When is (or is not) in the output:

When I call "echo hello"
Then the output should be "hello"

• Check that some external system has received the expected message:

When I send an email with:
"""
...
"""

Then the client should receive the email with:
"""
...
"""

Caution: While it might be tempting to implement Then steps to just look in the database – resist the temptation.
You should only verify output that is observable by the user (or external system). Database data itself is only visible
internally to your application, but is then finally exposed by the output of your system in a web browser, on the
command-line or an email message.

And & But

If you have several Given, When or Then steps you can write:

Scenario: Multiple Givens
Given one thing
Given another thing
Given yet another thing
When I open my eyes
Then I see something
Then I don’t see something else

Or you can use And or But steps, allowing your Scenario to read more fluently:

Scenario: Multiple Givens
Given one thing
And another thing
And yet another thing
When I open my eyes
Then I see something
But I don’t see something else

Behat interprets steps beginning with And or But exactly the same as all other steps; it doesn’t differentiate between
them - you should!

Backgrounds

Backgrounds allows you to add some context to all scenarios in a single feature. A Background is like an untitled
scenario, containing a number of steps. The difference is when it is run: the background is run before each of your
scenarios, but after your BeforeScenario Hooks.

22 Chapter 3. User Guide

Behat, Release 3.0.12

Feature: Multiple site support

Background:
Given a global administrator named "Greg"
And a blog named "Greg’s anti-tax rants"
And a customer named "Wilson"
And a blog named "Expensive Therapy" owned by "Wilson"

Scenario: Wilson posts to his own blog
Given I am logged in as Wilson
When I try to post to "Expensive Therapy"
Then I should see "Your article was published."

Scenario: Greg posts to a client’s blog
Given I am logged in as Greg
When I try to post to "Expensive Therapy"
Then I should see "Your article was published."

Scenario Outlines

Copying and pasting scenarios to use different values can quickly become tedious and repetitive:

Scenario: Eat 5 out of 12
Given there are 12 cucumbers
When I eat 5 cucumbers
Then I should have 7 cucumbers

Scenario: Eat 5 out of 20
Given there are 20 cucumbers
When I eat 5 cucumbers
Then I should have 15 cucumbers

Scenario Outlines allow us to more concisely express these examples through the use of a template with placeholders:

Scenario Outline: Eating
Given there are <start> cucumbers
When I eat <eat> cucumbers
Then I should have <left> cucumbers

Examples:
start	eat	left
12	5	7
20	5	15

The Scenario Outline steps provide a template which is never directly run. A Scenario Outline is run once for each
row in the Examples section beneath it (except for the first header row).

The Scenario Outline uses placeholders, which are contained within < > in the Scenario Outline’s steps. For example:

Given <I’m a placeholder and I’m ok>

Think of a placeholder like a variable. It is replaced with a real value from the Examples: table row, where the
text between the placeholder angle brackets matches that of the table column header. The value substituted for the
placeholder changes with each subsequent run of the Scenario Outline, until the end of the Examples table is reached.

Tip: You can also use placeholders in Multiline Arguments.

3.4. Writing Scenarios 23

Behat, Release 3.0.12

Note: Your step definitions will never have to match the placeholder text itself, but rather the values replacing the
placeholder.

So when running the first row of our example:

Scenario Outline: Eating
Given there are <start> cucumbers
When I eat <eat> cucumbers
Then I should have <left> cucumbers

Examples:
| start | eat | left |
| 12 | 5 | 7 |

The scenario that is actually run is:

Scenario: Eating
<start> replaced with 12:
Given there are 12 cucumbers
<eat> replaced with 5:
When I eat 5 cucumbers
<left> replaced with 7:
Then I should have 7 cucumbers

Tables

Tables as arguments to steps are handy for specifying a larger data set - usually as input to a Given or as expected
output from a Then.

Scenario:
Given the following people exist:
name	email	phone
Aslak	aslak@email.com	123
Joe	joe@email.com	234
Bryan	bryan@email.org	456

Attention: Don’t confuse tables with scenario outlines - syntactically they are identical, but they have a different
purpose. Outlines declare multiple different values for the same scenario, while tables are used to expect a set of
data.

24 Chapter 3. User Guide

Behat, Release 3.0.12

Matching Tables in your Step Definition

A matching definition for this step looks like this:

use Behat\Gherkin\Node\TableNode;

// ...

/**
* @Given the following people exist:

*/
public function thePeopleExist(TableNode $table)
{

foreach ($table as $row) {
// $row[’name’], $row[’email’], $row[’phone’]

}
}

A table is injected into a definition as a TableNode object, from which you can get hash by columns
(TableNode::getHash() method) or by rows (TableNode::getRowsHash()).

Multiline Arguments

The one line steps let Behat extract small strings from your steps and receive them in your step definitions. However,
there are times when you want to pass a richer data structure from a step to a step definition.

This is what multiline step arguments are designed for. They are written on lines immediately following a step and are
passed to the step definition method as the last argument.

Multiline step arguments come in two flavours: tables or pystrings.

Pystrings

Multiline Strings (also known as PyStrings) are useful for specifying a larger piece of text. The text should be offset
by delimiters consisting of three double-quote marks ("""), placed on their own line:

Scenario:
Given a blog post named "Random" with:
"""
Some Title, Eh?
===============
Here is the first paragraph of my blog post.
Lorem ipsum dolor sit amet, consectetur adipiscing
elit.
"""

Note: The inspiration for PyString comes from Python where """ is used to delineate docstrings, much in the way
/** ... */ is used for multiline docblocks in PHP.

3.4. Writing Scenarios 25

Behat, Release 3.0.12

Matching PyStrings in your Step Definition

In your step definition, there’s no need to find this text and match it in your pattern. The text will automatically
be passed as the last argument into the step definition method. For example:

use Behat\Gherkin\Node\PyStringNode;

// ...

/**
* @Given a blog post named :title with:

*/
public function blogPost($title, PyStringNode $markdown)
{

$this->createPost($title, $markdown->getRaw());
}

PyStrings are stored in a PyStringNode instance, which you can simply convert to a string with (string)
$pystring or $pystring->getRaw() as in the example above.

Note: Indentation of the opening """ is not important, although common practice is two spaces in from the enclosing
step. The indentation inside the triple quotes, however, is significant. Each line of the string passed to the step
definition’s callback will be de-indented according to the opening """. Indentation beyond the column of the opening
""" will therefore be preserved.

Organizing Features and Scenarios

Tags

Tags are a great way to organize your features and scenarios. Consider this example:

@billing
Feature: Verify billing

@important
Scenario: Missing product description

Scenario: Several products

A Scenario or Feature can have as many tags as you like, just separate them with spaces:

@billing @bicker @annoy
Feature: Verify billing

Note: If a tag exists on a Feature, Behat will assign that tag to all child Scenarios and Scenario Outlines
too.

Testing Features

We’ve already used this strange FeatureContext class as a home for our step definitions and Hooks, but we haven’t
done much to explain what it actually is.

26 Chapter 3. User Guide

Behat, Release 3.0.12

Context classes are a keystone of testing environment in Behat. The context class is a simple POPO (Plain Old PHP
Object) that tells Behat how to test your features. If *.feature files are all about describing how your application
behaves, then the context class is all about how to test it.

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context
{

public function __construct($parameter)
{

// instantiate context
}

/** @BeforeFeature */
public static function prepareForTheFeature()
{

// clean database or do other preparation stuff
}

/** @Given we have some context */
public function prepareContext()
{

// do something
}

/** @When event occurs */
public function doSomeAction()
{

// do something
}

/** @Then something should be done */
public function checkOutcomes()
{

// do something
}

}

A simple mnemonic for context classes is: “testing features in a context”. Feature descriptions tend to be very high
level. It means there’s not much technical detail exposed in them, so the way you will test those features pretty much
depends on the context you test them in. That’s what context classes are.

Tip: Behat can automatically generate this class by using the Behat command line tool with the --init option from
your project’s directory. Behat has several built-in tools that can help you when creating a new project. Learn more
about “Initialize a New Behat Project”.

Hooking into the Test Process

You’ve learned how to write step definitions and that with Gherkin you can move common steps into a background
block, making your features DRY. But what if that’s not enough? What if you want to execute some code before the
whole test suite or after a specific scenario? Hooks to the rescue:

// features/bootstrap/FeatureContext.php

3.6. Testing Features 27

Behat, Release 3.0.12

use Behat\Behat\Context\Context;
use Behat\Testwork\Hook\Scope\BeforeSuiteScope;
use Behat\Behat\Hook\Scope\AfterScenarioScope;

class FeatureContext implements Context
{

/**
* @BeforeSuite

*/
public static function prepare(BeforeSuiteScope $scope)
{

// prepare system for test suite
// before it runs

}

/**
* @AfterScenario @database

*/
public function cleanDB(AfterScenarioScope $scope)
{

// clean database after scenarios,
// tagged with @database

}
}

Behat Hook System

Behat provides a number of hook points which allow us to run arbitrary logic at various points in the Behat test cycle.
Hooks are a lot like step definitions or transformations - they are just simple methods with special annotations inside
your context classes. There is no association between where the hook is defined and which node it is run for, but you
can use tagged or named hooks if you want more fine grained control.

All defined hooks are run whenever the relevant action occurs. The action tree looks something like this:

-- Suite #1
| -- Feature #1
| | -- Scenario #1
| | | -- Step #1
| | | -- Step #2
| | -- Scenario #2
| | -- Step #1
| | -- Step #2
| -- Feature #2
| -- Scenario #1
| -- Step #1
-- Suite #2

-- Feature #1
-- Scenario #1

-- Step #1

This is a basic test cycle in Behat. There are many test suites, each of which has many features, which themselves
have many scenarios with many steps. Note that when Behat actually runs, scenario outline examples are interpreted
as scenarios - meaning each outline example becomes an actual scenario in this action tree.

28 Chapter 3. User Guide

Behat, Release 3.0.12

Hooks

Hooks allow you to execute your custom code just before or just after each of these actions. Behat allows you to use
the following hooks:

1. The BeforeSuite hook is run before any feature in the suite runs. For example, you could use this
to set up the project you are testing. This hook receives an optional argument with an instance of the
Behat\Testwork\Hook\Scope\BeforeSuiteScope class.

2. The AfterSuite hook is run after all features in the suite have run. This hooks is useful to dump or print
some kind of statistics or tear down your application after testing. This hook receives an optional argument with
an instance of the Behat\Testwork\Hook\Scope\AfterSuiteScope class.

3. The BeforeFeature hook is run before a feature runs. This hook receives an optional argument with an
instance of the Behat\Behat\Hook\Scope\BeforeFeatureScope class.

4. The AfterFeature hook is run after Behat finishes executing a feature. This hook receives an optional
argument with an instance of the Behat\Behat\Hook\Scope\AfterFeatureScope class.

5. The BeforeScenario hook is run before a specific scenario will run. This hook receives an optional argu-
ment with an instance of the Behat\Behat\Hook\Scope\BeforeScenarioScope class.

6. The AfterScenario hook is run after Behat finishes executing a scenario. This hook receives an optional
argument with an instance of the Behat\Behat\Hook\Scope\AfterScenarioScope class.

7. The BeforeStep hook is run before a step runs. This hook receives an optional argument with an instance of
the Behat\Behat\Hook\Scope\BeforeStepScope class.

8. The AfterStep hook is run after Behat finishes executing a step. This hook receives an optional argument
with an instance of the Behat\Behat\Hook\Scope\AfterStepScope class.

You can use any of these hooks by annotating any of your methods in your context class:

/**
* @BeforeSuite

*/
public static function prepare($scope)
{

// prepare system for test suite
// before it runs

}

We use annotations as we did before with definitions. Simply use the annotation of the name of the hook you want to
use (e.g. @BeforeSuite).

Suite Hooks

Suite hooks are run outside of the scenario context. It means that your context class (e.g. FeatureContext) is not
instantiated yet and the only way Behat can execute code in it is through the static calls. That is why suite hooks must
be defined as static methods in the context class:

use Behat\Testwork\Hook\Scope\BeforeSuiteScope;
use Behat\Testwork\Hook\Scope\AfterSuiteScope;

/** @BeforeSuite */
public static function setup(BeforeSuiteScope $scope)
{
}

/** @AfterSuite */

3.6. Testing Features 29

Behat, Release 3.0.12

public static function teardown(AfterSuiteScope $scope)
{
}

There are two suite hook types available:

• @BeforeSuite - executed before any feature runs.

• @AfterSuite - executed after all features have run.

Feature Hooks

Same as suite hooks, feature hooks are ran outside of the scenario context. So same as suite hooks, your feature hooks
should be defined as static methods inside your context:

use Behat\Behat\Hook\Scope\BeforeFeatureScope;
use Behat\Behat\Hook\Scope\AfterFeatureScope;

/** @BeforeFeature */
public static function setupFeature(BeforeFeatureScope $scope)
{
}

/** @AfterFeature */
public static function teardownFeature(AfterFeatureScope $scope)
{
}

There are two feature hook types available:

• @BeforeFeature - gets executed before every feature in suite.

• @AfterFeature - gets executed after every feature in suite.

Scenario Hooks

Scenario hooks are triggered before or after each scenario runs. These hooks are executed inside an initialized context
instance, so not only could they be simple context instance methods, they will also have access to any object properties
you set during your scenario:

use Behat\Behat\Hook\Scope\BeforeScenarioScope;
use Behat\Behat\Hook\Scope\AfterScenarioScope;

/** @BeforeScenario */
public function before(BeforeScenarioScope $scope)
{
}

/** @AfterScenario */
public function after(AfterScenarioScope $scope)
{
}

There are two scenario hook types available:

• @BeforeScenario - executed before every scenario in each feature.

• @AfterScenario - executed after every scenario in each feature.

30 Chapter 3. User Guide

Behat, Release 3.0.12

Now, the interesting part:

The @BeforeScenario hook executes not only before each scenario in each feature, but before each example row
in the scenario outline. Yes, each scenario outline example row works almost the same as a usual scenario.

@AfterScenario functions exactly the same way, being executed both after usual scenarios and outline examples.

Step Hooks

Step hooks are triggered before or after each step runs. These hooks are run inside an initialized context instance, so
they are just plain context instance methods in the same way as scenario hooks are:

use Behat\Behat\Hook\Scope\BeforeStepScope;
use Behat\Behat\Hook\Scope\AfterStepScope;

/** @BeforeStep */
public function beforeStep(BeforeStepScope $scope)
{
}

/** @AfterStep */
public function after(AfterStepScope $scope)
{
}

There are two step hook types available:

• @BeforeStep - executed before every step in each scenario.

• @AfterStep - executed after every step in each scenario.

Tagged Hooks

Sometimes you may want a certain hook to run only for certain scenarios, features or steps. This can be achieved by as-
sociating a @BeforeFeature, @AfterFeature, @BeforeScenario, @AfterScenario, @BeforeStep
or @AfterStep hook with one or more tags. You can also use OR (||) and AND (&&) tags:

/**
* @BeforeScenario @database,@orm

*/
public function cleanDatabase()
{

// clean database before
// @database OR @orm scenarios

}

Use the && tag to execute a hook only when it has all provided tags:

/**
* @BeforeScenario @database&&@fixtures

*/
public function cleanDatabaseFixtures()
{

// clean database fixtures
// before @database @fixtures
// scenarios

}

3.6. Testing Features 31

Behat, Release 3.0.12

Defining Reusable Actions

Gherkin language provides a way to describe your application behavior in business understandable language. But
how do you test that the described behavior is actually implemented? Or that the application satisfies your business
expectations as described in the feature scenarios? Behat provides a way to map your scenario steps (actions) 1-to-1
with actual PHP code called step definitions:

/**
* @When I do something with :argument

*/
public function iDoSomethingWith($argument)
{

// do something with $argument
}

Note: Step definitions are just normal PHP methods. They are instance methods in a special class called FeatureCon-
text.

Creating Your First Step Definition

The main goal for a step definition is to be executed when Behat sees its matching step in executed scenario. However,
just because a method exists within FeatureContext doesn’t mean Behat can find it. Behat needs a way to check
that a concrete class method is suitable for a concrete step in a scenario. Behat matches FeatureContext methods
to step definitions using pattern matching.

When Behat runs, it compares lines of Gherkin steps from each scenario to the patterns bound to each method in your
FeatureContext. If the line of Gherkin satisfies a bound pattern, its corresponding step definition is executed. It’s
that simple!

Behat uses php-doc annotations to bind patterns to FeatureContext methods:

/**
* @When I do something with :methodArgument

*/
public function someMethod($methodArgument) {}

Let’s take a closer look at this code:

1. @When is a definition keyword. There are 3 supported keywords in annotations: @Given/@When/@Then.
These three definition keywords are actually equivalent, but all three are available so that your step definition
remains readable.

2. The text after the keyword is the step text pattern (e.g. I do something with :methodArgument).

3. All token values of the pattern (e.g. :methodArgument) will be captured and passed to the method argument
with the same name ($methodArgument).

Note: Notice the comment block starts with /**, and not the usual /*. This is important for Behat to be able to
parse such comments as annotations!

As you have probably noticed, this pattern is quite general and its corresponding method will be called for steps that
contain ... I do something with ..., including:

Given I do something with "string1"
When I do something with ’some other string’
Then I do something with 25

32 Chapter 3. User Guide

Behat, Release 3.0.12

The only real difference between those steps in the eyes of Behat is the captured token text. This
text will be passed to the step’s corresponding method as an argument value. In the example above,
FeatureContext::someMethod() will be called three times, each time with a different argument:

1. $context->someMethod($methodArgument = ’string1’);.

2. $context->someMethod($methodArgument = ’some other string’);.

3. $context->someMethod($methodArgument = ’25’);.

Note: A pattern can’t automatically determine the datatype of its matches, so all method arguments coming from step
definitions are passed as strings. Even if your pattern matches “500”, which could be considered an integer, ‘500’ will
be passed as a string argument to the step definition’s method.

This is not a feature or limitation of Behat, but rather the inherent way string matching works. It is your responsibility
to cast string arguments to integers, floats or booleans where applicable given the code you are testing.

Casting arguments to specific types can be accomplished using step argument transformations.

Note: Behat does not differentiate between step keywords when matching patterns to methods. So a step defined with
@When could also be matched to @Given ..., @Then ..., @And ..., @But ..., etc.

Your step definitions can also define multiple arguments to pass to its matching FeatureContext method:

/**
* @When I do something with :stringArgument and with :numberArgument

*/
public function someMethod($stringArgument, $numberArgument) {}

You can also specify alternative words and optional parts of words, like this:

/**
* @When there is/are :count monster(s)

*/
public function thereAreMonsters($count) {}

If you need to come up with a much more complicated matching algorithm, you can always use good old regular
expressions:

/**
* @When /^there (?:is|are) (\d+) monsters?$/i

*/
public function thereAreMonsters($count) {}

Definition Snippets

You now know how to write step definitions by hand, but writing all these method stubs, annotations and patterns by
hand is tedious. Behat makes this routine task much easier and fun by generating definition snippets for you! Let’s
pretend that you have this feature:

Feature:
Scenario:
Given some step with "string" argument
And number step with 23

If your context class implements Behat\Behat\Context\SnippetAcceptingContext interface and you
test a feature with missing steps in Behat:

3.6. Testing Features 33

Behat, Release 3.0.12

$ vendor/bin/behat features/example.feature

Behat will provide auto-generated snippets for your context class.

It not only generates the proper definition annotation type (@Given), but also a proper pattern with tokens capturing
(:arg1, :arg2), method name (someStepWithArgument(), numberStepWith()) and arguments ($arg1,
$arg2), all based just on the text of the step. Isn’t that cool?

The only thing left for you to do is to copy these method snippets into your FeatureContext class and provide a
useful body for them. Or even better, run behat with --append-snippets option:

$ vendor/bin/behat features/example.feature --dry-run --append-snippets

--append-snippets tells Behat to automatically add snippets inside your context class.

Note: Implementing the SnippetAcceptingContext interface tells Behat that your con-
text is expecting snippets to be generated inside it. Behat will generate simple pattern snippets
for you, but if regular expressions are your thing, Behat can generate them instead if you imple-
ment Behat\Behat\Context\CustomSnippetAcceptingContext interface instead and add
getAcceptedSnippetType() method returning string "regex":

public static function getAcceptedSnippetType()
{

return ’regex’;
}

Step Execution Result Types

Now you know how to map actual code to PHP code that will be executed. But how can you tell what exactly “failed”
or “passed” when executing a step? And how does Behat actually check that a step executed properly?

For that, we have step execution types. Behat differentiates between seven types of step execution results: “Successful
Steps”, “Undefined Steps”, “Pending Steps”, “Failed Steps”, “Skipped Steps”, “Ambiguous Steps” and “Redundant
Step Definitions”.

Let’s use our previously introduced feature for all the following examples:

features/example.feature
Feature:

Scenario:
Given some step with "string" argument
And number step with 23

Successful Steps

When Behat finds a matching step definition it will execute it. If the definition method does not throw any
Exception, the step is marked as successful (green). What you return from a definition method has no effect
on the passing or failing status of the definition itself.

Let’s pretend our context class contains the code below:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context

34 Chapter 3. User Guide

Behat, Release 3.0.12

{
/** @Given some step with :argument1 argument */
public function someStepWithArgument($argument1)
{
}

/** @Given number step with :argument1 */
public function numberStepWith($argument1)
{
}

}

When you run your feature, you’ll see all steps passed and are marked as green. That’s simply because no exceptions
were thrown during their execution.

Note: Passed steps are always marked as green if colors are supported by your console.

Tip: Enable the “posix” PHP extension in order to see colorful Behat output. Depending on your Linux, Mac OS or
other Unix system it might be part of the default PHP installation or a separate php5-posix package.

Undefined Steps

When Behat cannot find a matching definition, the step is marked as undefined, and all subsequent steps in the
scenarios are skipped.

Let’s pretend we have an empty context class:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context
{
}

When you run your feature, you’ll get 2 undefined steps that are marked yellow.

Note: Undefined steps are always marked as yellow if colors are supported by your console.

Note: All steps following an undefined step are not executed, as the behavior following it is unpredictable. These
steps are marked as skipped (cyan).

Tip: If you use the --strict option with Behat, undefined steps will cause Behat to exit with 1 code.

Pending Steps

When a definition method throws a Behat\Behat\Tester\Exception\PendingException exception, the
step is marked as pending, reminding you that you have work to do.

Let’s pretend your FeatureContext looks like this:

3.6. Testing Features 35

Behat, Release 3.0.12

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;
use Behat\Behat\Tester\Exception\PendingException;

class FeatureContext implements Context
{

/** @Given some step with :argument1 argument */
public function someStepWithArgument($argument1)
{

throw new PendingException(’Do some string work’);
}

/** @Given number step with :argument1 */
public function numberStepWith($argument1)
{

throw new PendingException(’Do some number work’);
}

}

When you run your feature, you’ll get 1 pending step that is marked yellow and one step following it that is marked
cyan.

Note: Pending steps are always marked as yellow if colors are supported by your console, because they are logically
similar to undefined steps.

Note: All steps following a pending step are not executed, as the behavior following it is unpredictable. These steps
are marked as skipped.

Tip: If you use --strict option with Behat, pending steps will cause Behat to exit with 1 code.

Failed Steps

When a definition method throws any Exception (except PendingException) during execution, the step is
marked as failed. Again, what you return from a definition does not affect the passing or failing of the step. Returning
null or false will not cause a step to fail.

Let’s pretend, that your FeatureContext has following code:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context
{

/** @Given some step with :argument1 argument */
public function someStepWithArgument($argument1)
{

throw new Exception(’some exception’);
}

/** @Given number step with :argument1 */
public function numberStepWith($argument1)
{

36 Chapter 3. User Guide

Behat, Release 3.0.12

}
}

When you run your feature, you’ll get 1 failing step that is marked red and it will be followed by 1 skipped step that is
marked cyan.

Note: Failed steps are always marked as red if colors are supported by your console.

Note: All steps within a scenario following a failed step are not executed, as the behavior following it is unpredictable.
These steps are marked as skipped.

Tip: If Behat finds a failed step during suite execution, it will exit with 1 code.

Tip: Behat doesn’t come with its own assertion tool, but you can use any proper assertion tool out there. Proper
assertion tool is a library, which assertions throw exceptions on fail. For example, if you’re familiar with PHPUnit,
you can use its assertions in Behat by installing it via composer:

$ php composer.phar require --dev phpunit/phpunit=’~4.1.0’

and then by simply using assertions in your steps:

PHPUnit_Framework_Assert::assertCount(intval($count), $this->basket);

Tip: You can get exception stack trace with -vv option provided to Behat:

$ vendor/bin/behat features/example.feature -vv

Skipped Steps

Steps that follow undefined, pending or failed steps are never executed, even if there is a matching definition. These
steps are marked skipped:

Note: Skipped steps are always marked as cyan if colors are supported by your console.

Ambiguous Steps

When Behat finds two or more definitions that match a single step, this step is marked as ambiguous.

Consider your FeatureContext has following code:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context
{

/** @Given /^.* step with .*$/ */
public function someStepWithArgument()
{
}

3.6. Testing Features 37

Behat, Release 3.0.12

/** @Given /^number step with (\d+)$/ */
public function numberStepWith($argument1)
{
}

}

Executing Behat with this feature context will result in a Ambiguous exception being thrown.

Behat will not make a decision about which definition to execute. That’s your job! But as you can see, Behat will
provide useful information to help you eliminate such problems.

Redundant Step Definitions

Behat will not let you define a step expression’s corresponding pattern more than once. For example, look at the two
@Given patterns defined in this feature context:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context
{

/** @Given /^number step with (\d+)$/ */
public function workWithNumber($number1)
{
}

/** @Given /^number step with (\d+)$/ */
public function workDifferentlyWithNumber($number1)
{
}

}

Executing Behat with this feature context will result in a Redundant exception being thrown.

Step Argument Transformations

Step argument transformations allow you to abstract common operations performed on step definition arguments into
reusable methods. In addition, these methods can be used to transform a normal string argument that was going to be
used as an argument to a step definition method, into a more specific data type or an object.

Each transformation method must return a new value. This value then replaces the original string value that was going
to be used as an argument to a step definition method.

Transformation methods are defined using the same annotation style as step definition methods, but instead use the
@Transform keyword, followed by a matching pattern.

As a basic example, you can automatically cast all numeric arguments to integers with the following context class
code:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context
{

/**

38 Chapter 3. User Guide

Behat, Release 3.0.12

* @Transform /^(\d+)$/

*/
public function castStringToNumber($string)
{

return intval($string);
}

/**
* @Then a user :name, should have :count followers

*/
public function assertUserHasFollowers($name, $count)
{

if (’integer’ !== gettype($count)) {
throw new Exception(’Integer expected’);

}
}

}

Note: In the same way as with step definitions, you can use both simple patterns and regular expressions.

Let’s go a step further and create a transformation method that takes an incoming string argument and returns a specific
object. In the following example, our transformation method will be passed a username, and the method will create
and return a new User object:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;

class FeatureContext implements Context
{

/**
* @Transform :user

*/
public function castUsernameToUser($user)
{

return new User($user);
}

/**
* @Then a :user, should have :count followers

*/
public function assertUserHasFollowers(User $user, $count)
{

if (’integer’ !== gettype($count)) {
throw new Exception(’Integer expected’);

}
}

}

Table Transformation

Let’s pretend we have written the following feature:

features/table.feature
Feature: Users

3.6. Testing Features 39

Behat, Release 3.0.12

Scenario: Creating Users
Given the following users:

name	followers
everzet	147
avalanche123	142
kriswallsmith	274
fabpot	962

And our FeatureContext class looks like this:

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;
use Behat\Gherkin\Node\TableNode;

class FeatureContext implements Context
{

/**
* @Given the following users:

*/
public function pushUsers(TableNode $usersTable)
{

$users = array();
foreach ($usersTable as $userHash) {

$user = new User();
$user->setUsername($userHash[’name’]);
$user->setFollowersCount($userHash[’followers’]);
$users[] = $user;

}

// do something with $users
}

}

A table like this may be needed in a step testing the creation of the User objects themselves, and later used again
to validate other parts of our codebase that depend on multiple User objects that already exist. In both cases, our
transformation method can take our table of usernames and follower counts and build dummy User objects. By using
a transformation method we have eliminated the need to duplicate the code that creates our User objects, and can
instead rely on the transformation method each time this functionality is needed.

Transformations can also be used with tables. A table transformation is matched via a comma-delimited list of the
column headers prefixed with table::

// features/bootstrap/FeatureContext.php

use Behat\Behat\Context\Context;
use Behat\Gherkin\Node\TableNode;

class FeatureContext implements Context
{

/**
* @Transform table:name,followers

*/
public function castUsersTable(TableNode $usersTable)
{

$users = array();
foreach ($usersTable->getHash() as $userHash) {

$user = new User();
$user->setUsername($userHash[’name’]);

40 Chapter 3. User Guide

Behat, Release 3.0.12

$user->setFollowersCount($userHash[’followers’]);
$users[] = $user;

}

return $users;
}

/**
* @Given the following users:

*/
public function pushUsers(array $users)
{

// do something with $users
}

/**
* @Then I expect the following users:

*/
public function assertUsers(array $users)
{

// do something with $users
}

}

Note: Transformations are powerful and it is important to take care how you implement them. A mistake can often
introduce strange and unexpected behavior. Also, they are inherently hard to debug because of their highly dynamic
nature.

Tip: Behat provides a command line option that allows you to easily browse definitions in order to reuse them or
adapt them.

Context Class Requirements

In order to be used by Behat, your context class should follow these rules:

1. The context class should implement the Behat\Behat\Context\Context interface.

2. The context class should be called FeatureContext. It’s a simple convention inside the Behat infrastructure.
FeatureContext is the name of the context class for the default suite. This can easily be changed through
suite configuration inside behat.yml.

3. The context class should be discoverable and loadable by Behat. That means you should somehow tell Behat
about your class file. Behat comes with a PSR-0 autoloader out of the box and the default autoloading directory
is features/bootstrap. That’s why the default FeatureContext is loaded so easily by Behat. You
can place your own classes under features/bootstrap by following the PSR-0 convention or you can
even define your own custom autoloading folder via behat.yml.

Note: Behat\Behat\Context\SnippetAcceptingContext and Behat\Behat\Context\CustomSnippetAcceptingContext
are special versions of the Behat\Behat\Context\Context interface that tell Behat this context expects snip-
pets to be generated for it.

Tip: The Behat command line tool has an --init option that will initialize a new Behat project in your directory.
Learn more about Initialize a New Behat Project.

3.6. Testing Features 41

Behat, Release 3.0.12

Contexts Lifetime

Your context class is initialized before each scenario is run, and every scenario has its very own context instance. This
means 2 things:

1. Every scenario is isolated from each other scenario’s context. You can do almost anything inside your scenario
context instance without the fear of affecting other scenarios - every scenario gets its own context instance.

2. Every step in a single scenario is executed inside a common context instance. This means you can set private
instance variables inside your @Given steps and you’ll be able to read their new values inside your @When and
@Then steps.

Multiple Contexts

At some point, it could become very hard to maintain all your step definitions and Hooks inside a single class. You
could use class inheritance and split definitions into multiple classes, but doing so could cause your code to become
more difficult to follow and use.

In light of these issues, Behat provides a more flexible way of helping make your code more structured by allowing
you to use multiple contexts in a single test suite.

In order to customise the list of contexts your test suite requires, you need to fine-tune the suite configuration inside
behat.yml:

behat.yml

default:
suites:

default:
contexts:

- FeatureContext
- SecondContext
- ThirdContext

The first default in this configuration is a name of the profile. We will discuss profiles a little bit later. Under the
specific profile, we have a special suites section, which configures suites inside this profile. We will talk about test
suites in more detail in the next chapter, for now just keep in mind that a suite is a way to tell Behat where to find your
features and how to test them. The interesting part for us now is the contexts section - this is an array of context
class names. Behat will use the classes specified there as your feature contexts. This means that every time Behat sees
a scenario in your test suite, it will:

1. Get list of all context classes from this contexts option.

2. Will try to initialize all these context classes into objects.

3. Will search for step definitions and Hooks in all of them.

Note: Do not forget that each of these context classes should follow all context class requirements. Specifically - they
all should implement Behat\Behat\Context\Context interface and be autoloadable by Behat.

Basically, all contexts under the contexts section of your behat.yml are the same for Behat. It will find and
use the methods in them the same way it does in the default FeatureContext. And if you’re happy with a single
context class, but you don’t like the name FeatureContext, here’s how you change it:

behat.yml

default:
suites:

42 Chapter 3. User Guide

Behat, Release 3.0.12

default:
contexts:

- MyAwesomeContext

This configuration will tell Behat to look for MyAwesomeContext instead of the default FeatureContext.

Note: Unlike profiles, Behat will not inherit any configuration of your default suite. The name default is only
used for demonstration purpose in this guide. If you have multiple suites that all should use the same context, you will
have to define that specific context for every specific suite:

behat.yml

default:
suites:

default:
contexts:

- MyAwesomeContext
- MyWickedContext

suite_a:
contexts:

- MyAwesomeContext
- MyWickedContext

suite_b:
contexts:

- MyAwesomeContext

This configuration will tell Behat to look for MyAwesomeContext and MyWickedContext when testing
suite_a and MyAwesomeContext when testing suite_b. In this example, suite_b will not be able to call
steps that are defined in the MyWickedContext. As you can see, even if you are using the name default as the
name of the suite, Behat will not inherit any configuration from this suite.

Context Parameters

Context classes can be very flexible depending on how far you want to go in making them dynamic. Most of us will
want to make our contexts environment-independent; where should we put temporary files, which URLs will be used
to access the application? These are context configuration options highly dependent on the environment you will test
your features in.

We already said that context classes are just plain old PHP classes. How would you incorporate environment-dependent
parameters into your PHP classes? Use constructor arguments:

// features/bootstrap/MyAwesomeContext.php

use Behat\Behat\Context\Context;

class MyAwesomeContext implements Context
{

public function __construct($baseUrl, $tempPath)
{

$this->baseUrl = $baseUrl;
$this->tempPath = $tempPath;

}
}

As a matter of fact, Behat gives you ability to do just that. You can specify arguments required to instantiate your
context classes through same contexts setting inside your behat.yml:

3.6. Testing Features 43

Behat, Release 3.0.12

behat.yml

default:
suites:

default:
contexts:

- MyAwesomeContext:
- http://localhost:8080
- /var/tmp

Note: Note an indentation for parameters. It is significant:

contexts:
- MyAwesomeContext:

- http://localhost:8080
- /var/tmp

Aligned four spaces from the context class itself.

Arguments would be passed to the MyAwesomeContext constructor in the order they were specified here. If you
are not happy with the idea of keeping an order of arguments in your head, you can use argument names instead:

behat.yml

default:
suites:

default:
contexts:

- MyAwesomeContext:
baseUrl: http://localhost:8080
tempPath: /var/tmp

As a matter of fact, if you do, the order in which you specify these arguments becomes irrelevant:

behat.yml

default:
suites:

default:
contexts:

- MyAwesomeContext:
tempPath: /var/tmp
baseUrl: http://localhost:8080

Taking this a step further, if your context constructor arguments are optional:

public function __construct($baseUrl = ’http://localhost’, $tempPath = ’/var/tmp’)
{

$this->baseUrl = $baseUrl;
$this->tempPath = $tempPath;

}

You then can specify only the parameter that you actually need to change:

behat.yml

default:
suites:

default:

44 Chapter 3. User Guide

Behat, Release 3.0.12

contexts:
- MyAwesomeContext:

tempPath: /var/tmp

In this case, the default values would be used for other parameters.

Context Traits

PHP 5.4 have brought an interesting feature to the language - traits. Traits are a mechanism for code reuse in single
inheritance languages like PHP. Traits are implemented as a compile-time copy-paste in PHP. That means if you put
some step definitions or hooks inside a trait:

// features/bootstrap/ProductsDictionary.php

trait ProductsDictionary
{

/**
* @Given there is a(n) :arg1, which costs £:arg2

*/
public function thereIsAWhichCostsPs($arg1, $arg2)
{

throw new PendingException();
}

}

And then use it in your context:

// features/bootstrap/MyAwesomeContext.php

use Behat\Behat\Context\Context;

class MyAwesomeContext implements Context
{

use ProductsDictionary;
}

It will just work as you expect it to.

Context traits come in handy if you’d like to have separate contexts, but still need use the very same step definition in
both of them. Instead of having the same code in both context classes – and having to maintain it in both – you should
create a single Trait that you would then use in both context classes.

Note: Given that step definitions cannot be duplicated within a Suite, this will only work for contexts used in separate
suites.

In other words, if your Suite uses at least two different Contexts, and those context classes use the same Trait, this
will result in a duplicate step definition and Behat will complain by throwing a Redundant exception.

Command Line Tool

Identifying Tests

3.7. Command Line Tool 45

Behat, Release 3.0.12

By Suite

By default, when you run Behat it will execute all registered suites one-by-one. If you want to run a single suite
instead, use the --suite option:

$ vendor/bin/behat --suite=web_features

Format Options

Behat supports different ways of printing output information. Output printers in behat are called formats or format-
ters. You can tell behat to run with a specific formatter by providing the --format option:

$ behat --format progress

Note: The default formatter is pretty.

behat supports 2 formatters out of the box:

• pretty - prints the feature as is:

• progress - prints one character per step:

If you don’t want to print output to the console, you can tell behat to print output to a file instead of STDOUT with
the --out option:

$ behat --format pretty --out report.txt

Note: Some formatters, like junit, always require the --out option to be specified. The junit formatter
generates *.xml files for every suite, so it needs a destination directory to put these XML files into.

46 Chapter 3. User Guide

Behat, Release 3.0.12

Also, you can specify multiple formats to be used by Behat using multiple –format options:

$ behat --format pretty --format progress

In this case, default output will be used as output for both formatters. But if you want them to use different ones -
specify them with --out:

$ behat -f pretty -o ~/pretty.out -f progress -o std -f junit -o xml

In this case, output of pretty formatter will be written to ~/pretty.out file, output of junit formatter will be written
to xml folder and progress formatter will just print to console.

Behat tries hard to identify if your terminal supports colors or not, but sometimes it still fails. In such cases, you can
force behat to use colors (or not) with the options --colors or --no-colors, respectively:

$ behat --no-colors

Informative Output

Print Definitions

As your set of features will grow, there’s a good chance that the amount of different steps that you’ll have at your
disposal to describe new scenarios will also grow.

Behat provides a command line option --definitions or simply -d to easily browse definitions in order to reuse
them or adapt them (introducing new placeholders for example).

For example, when using the Mink context provided by the Mink extension, you’ll have access to its step dictionary
by running:

$ behat -di
web_features | Given /^(?:|I)am on (?:|the)homepage$/

| Opens homepage.
| at ‘Behat\MinkExtension\Context\MinkContext::iAmOnHomepage()‘

web_features | When /^(?:|I)go to (?:|the)homepage$/
| Opens homepage.
| at ‘Behat\MinkExtension\Context\MinkContext::iAmOnHomepage()‘

web_features | Given /^(?:|I)am on "(?P<page>[^"]+)"$/
| Opens specified page.
| at ‘Behat\MinkExtension\Context\MinkContext::visit()‘

...

or, for a shorter output:

$ behat -dl
web_features | Given /^(?:|I)am on (?:|the)homepage$/
web_features | When /^(?:|I)go to (?:|the)homepage$/
web_features | Given /^(?:|I)am on "(?P<page>[^"]+)"$/
web_features | When /^(?:|I)go to "(?P<page>[^"]+)"$/
web_features | When /^(?:|I)reload the page$/
web_features | When /^(?:|I)move backward one page$/
web_features | When /^(?:|I)move forward one page$/
...

You can also search for a specific pattern by running:

3.7. Command Line Tool 47

Behat, Release 3.0.12

$ behat --definitions="field" (or simply behat -dfield)
web_features | When /^(?:|I)fill in "(?P<field>(?:[^"]|\\")*)" with "(?P<value>(?:[^"]|\\")*)"$/

| Fills in form field with specified id|name|label|value.
| at ‘Behat\MinkExtension\Context\MinkContext::fillField()‘

web_features | When /^(?:|I)fill in "(?P<field>(?:[^"]|\\")*)" with:$/
| Fills in form field with specified id|name|label|value.
| at ‘Behat\MinkExtension\Context\MinkContext::fillField()‘

#...

That’s it, you can now search and browse your whole step dictionary.

Configuration

Behat has a very powerful configuration system based on YAML configuration files and profiles.

Configuring Test Suites

We already talked about configuring multiple contexts for a single test suite in a previous chapter. Now it is time to
talk about test suites themselves. A test suite represents a group of concrete features together with the information on
how to test them.

With suites you can configure Behat to test different kinds of features using different kinds of contexts and doing so in
one run. Test suites are really powerful and behat.yml makes them that much more powerful:

behat.yml

default:
suites:

core_features:
paths: [%paths.base%/features/core]
contexts: [CoreDomainContext]

user_features:
paths: [%paths.base%/features/web]
filters: { role: user }
contexts: [UserContext]

admin_features:
paths: [%paths.base%/features/web]
filters: { role: admin }
contexts: [AdminContext]

Suite Paths

One of the most obvious settings of the suites is the paths configuration:

behat.yml

default:
suites:

core_features:
paths:

- %paths.base%/features

48 Chapter 3. User Guide

Behat, Release 3.0.12

- %paths.base%/test/features
- %paths.base%/vendor/.../features

As you might imagine, this option tells Behat where to search for test features. You could, for example, tell Behat to
look into the features/web folder for features and test them with WebContext:

behat.yml

default:
suites:

web_features:
paths: [%paths.base%/features/web]
contexts: [WebContext]

You then might want to also describe some API-specific features in features/api and test them with an API-
specific ApiContext. Easy:

behat.yml

default:
suites:

web_features:
paths: [%paths.base%/features/web]
contexts: [WebContext]

api_features:
paths: [%paths.base%/features/api]
contexts: [ApiContext]

This will cause Behat to:

1. Find all features inside features/web and test them using your WebContext.

2. Find all features inside features/api and test them using your ApiContext.

Note: %paths.base% is a special variable in behat.yml that refers to the folder in which behat.yml is stored.

Path-based suites are an easy way to test highly-modular applications where features are delivered by highly decoupled
components. With suites you can test all of them together.

Suite Filters

In addition to being able to run features from different directories, we can run scenarios from the same directory, but
filtered by specific criteria. The Gherkin parser comes bundled with a set of cool filters such as tags and name filters.
You can use these filters to run features with specific tag (or name) in specific contexts:

behat.yml

default:
suites:

web_features:
paths: [%paths.base%/features]
contexts: [WebContext]
filters:

tags: @web
api_features:

paths: [%paths.base%/features]
contexts: [ApiContext]

3.8. Configuration 49

Behat, Release 3.0.12

filters:
tags: @api

This configuration will tell Behat to run features and scenarios tagged as @web in WebContext and features and
scenarios tagged as @api in ApiContext. Even if they all are stored in the same folder. How cool is that? But it
gets even better, because Gherkin 4+ (used in Behat 3+) added a very special role filter. That means, you can now have
nice actor-based suites:

behat.yml

default:
suites:

user_features:
paths: [%paths.base%/features]
contexts: [UserContext]
filters:

role: user
admin_features:

paths: [%paths.base%/features]
contexts: [AdminContext]
filters:

role: admin

A Role filter takes a look into the feature description block:

Feature: Registering users
In order to help more people use our system
As an admin
I need to be able to register more users

It looks for a As a ... or As an ... pattern and guesses its actor from it. It then filters features that do not
have the expected actor from the set. In the case of our example, it basically means that features described from the
perspective of the user actor will be tested in UserContext and features described from the perspective of the admin
actor will be tested in AdminContext. Even if they are in the same folder.

While it is possible to specify filters as part of suite configuration, sometimes you will want to exclude certain scenarios
across the suite, with the option to override the filters at the command line.

This is achieved by specifying the filter in the gherkin configuration:

behat.yml

default:
gherkin:

filters:
tags: ~@wip

In this instance, scenarios tagged as @wip will be ignored unless the CLI command is run with a custom filter, e.g.:

vendor/bin/behat --tags=wip

Tip: More details on identifying tests can be found in the chapter Identifying Tests.

Suite Contexts

Being able to specify a set of features with a set of contexts for these features inside the suite has a very interesting
side-effect. You can specify the same features in two different suites being tested against different contexts or the same

50 Chapter 3. User Guide

Behat, Release 3.0.12

contexts configured differently. This basically means that you can use the same subset of features to develop different
layers of your application with Behat:

behat.yml

default:
suites:

domain_features:
paths: [%paths.base%/features]
contexts: [DomainContext]

web_features:
paths: [%paths.base%/features]
contexts: [WebContext]
filters:

tags: @web

In this case, Behat will first run all the features from the features/ folder in DomainContext and then only
those tagged with @web in WebContext.

Tip: It might be worth reading how to execute a specific suite or initialize a new suite

behat.yml

All configuration happens inside a single configuration file in the YAML format. Behat tries to load behat.yml or
config/behat.yml by default, or you can tell Behat where your config file is with the --config option:

$ behat --config custom-config.yml

All configuration parameters in that file are defined under a profile name root (default: for example). A profile
is just a custom name you can use to quickly switch testing configuration by using the --profile option when
executing your feature suite.

The default profile is always default. All other profiles inherit parameters from the default profile. If you only
need one profile, define all of your parameters under the default: root:

behat.yml
default:

#...

Environment Variable - BEHAT_PARAMS

If you want to set up configurable Behat settings, use the BEHAT_PARAMS environment variable:

export BEHAT_PARAMS=’{"extensions" : {"Behat\\MinkExtension" : {"base_url" : "https://www.example.com/"}}}’

You can set any value for any option that is available in a behat.yml file. Just provide options in JSON format.
Behat will use those options as defaults. You can always override them with the settings in the project behat.yml
file (it has higher priority).

Tip: In order to specify a parameter in an environment variable, the value must not exist in your behat.yml

Tip: NOTE: In Behat 2.x this variable was in URL format. It has been changed to use JSON format.

3.8. Configuration 51

Behat, Release 3.0.12

Global Filters

While it is possible to specify filters as part of suite configuration, sometimes you will want to exclude certain scenarios
across the suite, with the option to override the filters at the command line.

This is achieved by specifying the filter in the gherkin configuration:

behat.yml

default:
gherkin:

filters:
tags: ~@wip

In this instance, scenarios tagged as @wip will be ignored unless the CLI command is run with a custom filter, e.g.:

vendor/bin/behat --tags=wip

Custom Autoloading

Sometimes you will need to place your features folder somewhere other than the default location (e.g.
app/features). All you need to do is specify the path you want to autoload via behat.yml:

behat.yml

default:
autoload:

’’: %paths.base%/app/features/bootstrap

If you wish to namespace your features (for example: to be PSR-1 complaint) you will need to add the namespace to
the classes and also tell behat where to load them. Here contexts is an array of classes:

behat.yml

default:
autoload:

’’: %paths.base%/app/features/bootstrap
suites:

default:
contexts: [My\Application\Namespace\Bootstrap\FeatureContext]

Note: Using behat.yml to autoload will only allow for PSR-0 You can also use composer.json to autoload,
which will also allow for PSR-4

Formatters

Default formatters can be enabled by specifying them in the profile.

behat.yml

default:
formatters:

pretty: true

52 Chapter 3. User Guide

Behat, Release 3.0.12

Extensions

Extensions can be configured like this:

behat.yml

default:
extensions:

Behat\MinkExtension:
base_url: http://www.example.com
selenium2: ~

3.8. Configuration 53

Behat, Release 3.0.12

54 Chapter 3. User Guide

CHAPTER 4

Cookbooks

Integrating Symfony2 with Behat

Symfony2 is a Web Application Framework that can be easily integrated and used seamlessly with Behat 3. As a
prerequisite for this cookbook you need to have working Symfony2 application.

In this cookbook we will cover:

1. Installing Behat dependency with Composer.

2. Initialising Behat suite.

3. Installing and enabling Symfony2 extension.

4. Accessing application services in contexts.

5. Using Symfony2 test client as a Mink driver.

Installing Behat in your Symfony2 Project

Recommended way of managing Behat dependency in your project is to use Composer. Assuming that you already
have composer.json file in your project you only need to add one new entry to it and install. It can be done
automatically for you with this command:

$ php composer.phar require --dev behat/behat

Note: Note that we have used --dev switch for Composer. It means that Behat will be installed as as require-dev
dependency in your project, and will not be present in production. For further information please check Composer
documentation.

Initialising Behat

After execution of this command you should see information about files initialised in your project, and you should be
able to write your first scenario. In order to verify Behat initialisation you can just run following command:

$ bin/behat

Tip: If you don’t feel familiar with Behat enough please read Quick Start first.

55

http://symfony.com/
https://getcomposer.org/)
https://getcomposer.org/doc/04-schema.md#require-dev
https://getcomposer.org/doc/04-schema.md#require-dev

Behat, Release 3.0.12

Installing and Enabling Symfony2 Extension

Great, you have a Behat suite working in your project, now it’s time to install Symfony2Extension. To do this you
need to add another dependency, but in the same way we did it a while ago:

$ php composer.phar require --dev behat/symfony2-extension

Now it’s time to enable extension in your behat.yml file. If it doesn’t exist just create such file in your project root
and fill it with following content:

default:
extensions:
Behat\Symfony2Extension: ~

If this file already exists just change its contents accordingly. From that point you should be able to run Behat and
Symfony2 extension will be loaded and ready to work with.

Accessing Application Services in Contexts

The extension we have just installed detects the default Symfony configuration and allows to use your application ser-
vices in context classes. To make a service available in a context you need to change your behat.yml configuration
and tell the extension which services to inject:

default:
suites:
default:

contexts:
- FeatureContext:

session: ’@session’
extensions:
Behat\Symfony2Extension: ~

This configuration will try to to match the $session dependency of your FeatureContext constructor by in-
jecting the session service into the context. Be careful because if such a service does not exist or its name does not
match, it will not work and you will end up with a Behat exception.

Using KernelDriver with your Behat Suite

Symfony2 has a build-in Test Client, which can help you with web acceptance testing, why not make use of it?
Especially because Behat has a Mink Extension that makes those kind of testing even easier.

The advantage of using KernelDriver instead of standard Mink driver is that you don’t need to run web server in order
to access a page. Also you can even use Symfony Profiler and inspect your application directly!. You can read more
about test client in Symfony Documentation.

If you don’t have Mink and MinkExtension yet, you can install those two with:

$ php composer.phar require --dev behat/mink
$ php composer.phar require --dev behat/mink-extension

In order to install BrowserKit Driver you need to execute following command:

$ php composer.phar require --dev behat/mink-browserkit-driver

Now you are only one step from being ready to make full use of Symfony2 extension in your project. You need to
enable extension in your behat.yml file as follows:

56 Chapter 4. Cookbooks

https://github.com/Behat/Symfony2Extension
http://mink.behat.org
http://symfony.com/doc/current/cookbook/testing/profiling.html
http://symfony.com/doc/current/book/testing.html#your-first-functional-test

Behat, Release 3.0.12

default:
extensions:
Behat\Symfony2Extension: ~
Behat\MinkExtension:

sessions:
default:
symfony2: ~

Et voilà! Now you are ready to drive your Symfony2 app development with Behat3!

Accessing Contexts from each other

When splitting the definitions in multiple contexts, it might be useful to access a context from another one. This is
particularly useful when migrating from Behat 2.x to replace subcontexts.

Behat allows to access the environment in hooks, so other contexts can be retrieved using a BeforeScenario hook:

use Behat\Behat\Context\Context;
use Behat\Behat\Hook\Scope\BeforeScenarioScope;

class FeatureContext implements Context
{

/** @var \Behat\MinkExtension\Context\MinkContext */
private $minkContext;

/** @BeforeScenario */
public function gatherContexts(BeforeScenarioScope $scope)
{

$environment = $scope->getEnvironment();

$this->minkContext = $environment->getContext(’Behat\MinkExtension\Context\MinkContext’);
}

}

Caution: Circular references in context objects would prevent the PHP reference counting from collecting con-
texts at the end of each scenarios, forcing to wait for the garbage collector to run. This would increase the memory
usage of your Behat run. To prevent that, it is better to avoid storing the environment itself in your context classes.
It is also better to avoid creating circular references between different contexts.

4.2. Accessing Contexts from each other 57

Behat, Release 3.0.12

58 Chapter 4. Cookbooks

CHAPTER 5

Useful Resources

Integrating Behat with PHPStorm

More information on integrating Behat with PHPStorm can be found in this blog post.

Behat cheat sheet

An interesting Behat and Mink cheat sheet developed by Jean-François Lépine

59

http://blog.jetbrains.com/phpstorm/2014/07/using-behat-in-phpstorm/
http://blog.lepine.pro/wp-content/uploads/2012/03/behat-cheat-sheet-en.pdf
http://blog.lepine.pro

	Introduction
	Behaviour Driven Development

	Quick Start
	Example
	Installation
	Development

	User Guide
	The Gherkin Language
	Features and Scenarios
	Initialize a New Behat Project
	Writing Scenarios
	Organizing Features and Scenarios
	Testing Features
	Command Line Tool
	Configuration

	Cookbooks
	Integrating Symfony2 with Behat
	Accessing Contexts from each other

	Useful Resources
	Integrating Behat with PHPStorm
	Behat cheat sheet

